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might be possible to show by femtosecond techniques that the rapid 
fluctuations shown for solvent dipolar correlations in time-de­
pendent dielectric friction36 or in computer simulation studies of 
dipolar fluids37,38 appear as fluctuations in fluorescence maxima 
or intensities. 

Note Added in Proof. The conversion of the initially formed 
excited state (S1 bent) of bimanes (l,5-diazabicyclo[3.3.0]octa-
3,6-dien-2,8-diones39,40) into a successor state (Sliquasi_pianar) is 

(37) Impey, R. W.; Madden, P. W.; McDonald, I. R. MoI. Phys. 1982, 
46, 513-539. 

(38) Edwards, D. M. F.; Madden, P. A. MoI. Phys. 1984, 51, 1163-1179. 
(39) Kosower, E. M.; Ben-Shoshan, M.; Faust, D.; Goldberg, I. J. Org. 

Chem. 1982,47, 213-221. 

Molecular volume is important, and it is important to measure 
it accurately. Volume is directly related to other physical chemical 
properties, such as charge, temperature, and pressure,1 and its 
converse, which is density, has proved useful in studying protein 
tertiary structure. Density variations in different regions of the 
protein interior2'3 and packing defects4 have been identified and 
related to conformational fluctuations, hydrogen exchange, and 
the protein folding problem. These studies have also emphasized 
the importance of a suitable definition of the molecular surface 
in order to accurately measure molecular volume. It is important 
to measure molecular volume accurately in order to make full use 
of the information contained in high-resolution structural de­
terminations of macromolecules. 

Before proceeding to describe the volume computation method, 
it is necessary to define the terminology used in this work. The 
van der Waals volume is the volume occupied by the atoms when 
considered to be hard spheres with van der Waals radii. The 
solvent-excluded volume is the volume of space from which solvent 
is excluded by the presence of the molecule, when the solvent 
molecule is also modeled as a hard sphere, called the probe sphere. 
The interstitital volume consists of packing defects between the 
atoms that are too small to admit a probe sphere of a given radius. 
The solvent-excluded volume is the van der Waals volume plus 
the interstitial volume. The van der Waals volume can be con-

(1) Morild, E. Adv. Protein Chem. 1981, 34, 93. 
(2) Richards, F. M. J. MoI. Biol. 1974, 82, 1. 
(3) Kuntz, I. D.; Crippen, G. M. Int. J. Peptide Protein Res. 1979,13, 223. 
(4) Richards, F. M. Carlsberg Res. Commun. 1979, 44, 47. 

characterized by T{ in linear alkanols. The conversions involve 
a modest degree of charge rearrangement.41 
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sidered to be a special case of the solvent-excluded volume, where 
the probe radius is zero. The general term, molecular volume, 
will be used to refer to both van der Waals and solvent-excluded 
volumes. 

The term solvent-accessible surface will be used to refer to the 
smooth network of convex and reentrant surface traced by the 
inward-facing part of the probe sphere as it rolls over the mole­
cule.5,6 This surface is chemically important because it (i) forms 
the boundary of the solvent-excluded volume, (ii) has convex 
regions that are coincident with the part of the van der Waals 
surface that is accessible to a probe sphere, and (iii) is useful for 
graphically representing and analyzing the interface of macro­
molecules with each other and with solvent, drugs, and other small 
molecules. The term was originally used to refer to the surface 
traced out by the center of a probe sphere,7 which is much easier 
to calculate but which lacks the advantages listed above. The 
general term, molecular surface, will also be used to refer to the 
solvent-accessible surface. 

Two general approaches to geometric computations may be 
distinguished: numerical and analytical. A numerical algorithm 
subdivides a geometric object into a large number of small, similar 
units. For a three-dimensional object, these units may be cubes. 
The answer given is only approximate, and the amount of com­
putation required for high accuracy is usually greater than that 
for an analytical method. An analytical method gives the answer 

(5) Richards, F. M. Annu. Rev. Biophys. Bioeng. 1977, 6, 151. 
(6) Connolly, M. L. Science 1983, 221, 709. 
(7) Lee, B.; Richards, F. M. J. MoI. Biol. 1971, 55, 379. 
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Abstract: Volume is a fundamental physical property of molecules that is important in understanding their structure, function, 
and interactions. Present methods for computing volumes of macromolecules from crystaliographically determined atomic 
coordinates introduce numerical errors that are, in the case of highly refined protein structures, larger than the experimental 
errors in the determination of the atomic coordinates. In order to obtain the maximum benefit from this high-quality experimental 
data, it is necessary to develop a volume-computation method whose numerical error is significantly less than the experimental 
error. Such a method is presented here. The molecule is modeled as a static collection of hard spheres which completely 
exclude a spherical probe representing a solvent molecule, van der Waals volumes are computed exactly, and solvent-excluded 
volumes are computed with an error of about 0.01%. The method's accuracy makes it particularly useful for comparing 
three-dimensional structures of a macromolecule in slightly differing conformations. Causes of such differences include temperature, 
oxidation state, presence of ligands, crystal form, and X-ray crystallographic refinement technique. Molecular volume changes 
during energy minimization, molecular dynamics simulation, and X-ray refinement can be monitored. This approach should 
also be of general utility in measuring the volumes of packing defects in protein interiors, ligand-binding pockets on protein 
surfaces, and gaps between molecules at subunit interfaces. Because the volume is defined analytically, it can be differentiated 
for use in energy functions. 
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Table I. Surface Definition Equations" 

variable name value 

atomic coordinates 
van der Waals radii 
probe radius 
Vci = (<t>s/6)r? sin 8sl cos2 8sl 

torus axis (<t>J2)[rij
2rp vector 

torus center 

torus radius 

base triangle angle 
base plane normal vector 
torus base point unit vector 
base point 
probe height 
probe position 
vertex 
contact circle center 
contact circle radius 
contact circle displacement 
concave arc plane 

normal vector 
concave triangle angle 
convex face angle 
saddle wrap angle 

saddle width angle 
euler characteristic 

a,, a,, ak, ... (input) 
r„ r,, rh ... (input) 
rp (input) 
dij = 1»; - »/l 
Uy = ( » , - »()/<*</ 
ty = »/,(«, + a,) + ' / , (a , - •,)-

[(r, + r,)2 - (/> + r,)2]/<tf 
ru-

1J1Ur1+ rj+2rtf-djyn 
W ~(r,.-r,)J] V*Id11 

a>ljk = arccos (uyu,t) 
uIJk = Uy X u,t/sin ^1J11 

U,j = \l,,k X U, »tjk • 

<ijk = liJ + U,(,[u,f(t ,* - t y ) ] / s i l l (Oy* 

PiJk - ^iJk ± hijkUjjk 

"pi = Ir1VtJk + rp,)Kri + r
P) 

Cy = (nty + rpa,)/(/-,• + rp) 
rc = rYi/^i + rp) 
dc = Uy(Cy - a,) 
nijk ~ (Vijk ~ ty ) X Uy/ry 

/3„ = arccos {nuk-nikJ) 
a„ = •K - 0V 

4>s = arccos (n/yi-iiy) when n,Jk x 
"y/Uy > O; = 2x - arccos (ny/t-ny/) 
when nyt X ny/Uy < 0 

e„ = arctan (rfc/rc) 
X = 2 - number of cycles 

0 As the probe sphere rolls around a pair of atoms, ;' and j , it traces 
out the volume of a torus, which has an axis Uy, center ty, and radius 
rtj. The circle of contact between the probe sphere and atom / has 
center Cy, radius rc, and signed displacement dc from the center of atom 
i. When the probe is simultaneously tangent to three atoms, i, j , and k, 
it has a center piJk, at a height hijk above a base point bijk, lying on the 
base triangle connecting the three atom centers. The contact point 
between the probe and atom i is called a vertex of the surface and is 
denoted by ypi. Concave triangles and convex faces meet at these ver­
tices and have interior angles of 0V and av, respectively. The angle that 
a saddle face wraps around the torus axis is denoted by 4>s. The saddle 
width angle, 6si, is defined in Figure 4. Also see Figure lc,d. 

Table II. Molecular Areas 

face area 

convex 
saddle 
concave 

A+ = r,2[2wx ~ T.s<t>s sin «„• - £v("- - <*„)] 
A, = 4>s[rifp(8si + 8sj) ~ rp

2(sin 6„ + sin S,j)] 

Table III. Volumes of Surface Pieces 

Convex 
V+ = V J O ^ + 

Saddle 
Vet = ( 0 s / 6 h 3 sin e„ cos2 B1, 
Vst = (<t>,/2)[r,j2rp sin 6„ - rtjr

2 (sin 8„ cos 6„ + 8„) + 
(rp

3/3)(sm 6si cos2 8st + 2 sin 8J] 
v = V+V+V+V 
r S r Cl r Sl ' ' SJ ' 'CJ 

Concave 
A/ = ^idijdik sin w,Jk 

V.= l/i(hiJkAf- rpA.) 

exactly as an equation, or a set of equations. 

Methods 
The starting point for computing solvent-excluded volume is to rep­

resent the solvent-accessible molecular surface and its area in an ana­
lytical fashion. This problem has been solved,8 and the resulting defi­
nitions and equations are shown in Tables I and II. These earlier results 
are needed to define the variables used in the equations for the volumes 
(Table III). 

Interior polyhedron. A polyhedron is derived from the analytical 
representation of the solvent-accessible surface. For each concave tri-

(8) Connolly, M. L. / . Appl. Crystaliogr. 1983, 16, 548. 

a 

Figure 1. Interior polyhedron volume (shaded), (a) Two-dimensional 
representation of a polyhedron as a polygon. The sides of the polygon 
represent faces of the polyhedron. The horizontal line at the bottom 
represents the xy plane. The trapezoids between the polj'gon sides and 
the bottom line represent truncated triangular prisms between the poly­
hedron faces and the xy plane. The unshaded region represents can­
cellation between prisms with negative volumes and parts of the prisms 
with positive volumes, (b) Truncated triangular prism. The cosine of 
the angle between the triangle face normal vector and a unit vector 
pointing along the positive z axis is multiplied by the triangular face area 
to give the right-section area, (c) Triangular face connecting three 
solvent-accessible atoms. The two unit vectors Uy and \ilk define the plane 
of the triangle, (d) The unit vector Uy* is perpendicular to the plane of 
the triangle and points from the base point by* to the probe sphere center 
Vtjk-

angle of the surface, a flat triangle is constructed between the centers of 
the three atoms that the concave triangle bridges. These flat triangles 
define a polyhedron inside the surface. 
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Figure 2. Two-dimensional representation of analytical partition: (a) 
Partition of solvent-excluded volume, (b) partition of van der Waals 
volume. 

Figure 3. Two-dimensional representation of a convex piece. The atom 
center is at the vertex. The outer arc represents the convex face. Con­
centric arcs represent pieces of concentric spherical shells. 

The volume of the interior polyhedron may be decomposed into 
truncated triangular prisms between each triangular face of the polyhe­
dron and the xy plane (Figure 1). The volume of a truncated triangular 
prism is treated as a signed quantity, being the product of two signed 
quantities: the area of a right section of the prism and the average length 
of the three vertical edge of the prism.9 A right section is the intersection 
of the prism with a plane perpendicular to the prism axis. The area of 
the right section is the product of the area of the polyhedral face, Af 
(derived below), with the cosine of the angle between the normal vector 
to the polyhedral face, ulJk, and the prism axis. Denoting a unit vector 
along the prism or z axis by z, then the area of the right section is (u^-z) 
Af. The average length of the three vertical edges of the prism is ( l / 
3)z-(af + ay + a t). Summing the prism volumes over all faces of the 
polyhedron gives the polyhedron volume 

Vp = £ jz- (a , + a,- + ak)(uiJk-z)Af 

The volume outside the polyhedron but inside the surface, which will 
be named the surface layer, is decomposed or partitioned into a set of 
disjoint pieces (Figure 2). There is one piece for each face of the surface. 
Since there are three shapes of surface faces (convex, saddle-shaped, and 
concave), there are then three shapes of surface pieces. The volumes of 
the surface pieces may be calculated by using solid geometry and integral 
calculus, as described below. 

Convex Piece. This computation is the simplest, being just the volume 
between the center of the atom and the convex face (Figure 3). This 
volume is the limit, as the shell thickness approaches zero, of the sum of 
the volumes of concentric spherical shell pieces, identical in shape but 
shrinking in size toward the atom center. The volume of each shell piece 
is equal to the convex face area, scaled by the square of the ratio of the 
shell and atom radii and multiplied by the infinitesimal thickness dr. 

Saddle Piece. The volume of the saddle piece (Figure 4) may be 
divided into four parts. Between the center of each atom and its circle 
of contact with the probe sphere (Table I) is a sector of cone. Between 
these two conical pieces is the volume of a sector of the hole inside a 
torus, which for ease of integration is divided into two parts lying on 
either side of the plane bisecting the torus. 

The volume of the cone of atom i is one-third of the product of its 
altitude with the area of its base: '/3 dc

vrc2- This volume must be 

(9) Beyer, W. H. "CRC Standard Mathematical Tables"; CRC Press: 
Cleveland, Ohio, 1976; p 13. 

Figure 4. Cross-section of a saddle piece. This area is rotated part way 
around the interatomic axis to generate the saddle piece. The volume 
of the torus hole is computed by integrating infinitesimally thin circular 
disks between the contact circles. 

Figure 5. Two-dimensional representation of a concave piece (hatched). 
The probe center is at the apex. The arc represents the concave face and 
the line at the bottom represents the base triangle. 

O O 
O O 
O O 

Figure 6. Two-dimensional representation of cusps. Two atoms close 
together share a continuous solvent-accessible surface, while two atoms 
separated by more than the probe diameter have distinct, spherical sur­
faces. In a limited intermediate range of interatomic distance, the sol­
vent-excluded volumes extend part way toward each other, ending in 
cusps. 

multiplied by the fraction of a complete circle that the saddle face wraps 
around the torus axis: 4>J{2TT). This product is the volume of the conical 
sector next to atom 1: (0s/6) d^c

2. From Figure 4 it can be seen that 
dc = rt sin S11 and rc = rt cos 6lt, so this volume may be written 

K1 = (05/6)r,3 sin e„ cos2 Bsl 

There is a similar term Vc]- for the volume of the conical sector for atom 

The volume of the hole of the torus between the two contact circles 
may be calculated by integral calculus. The volume is the limit, as the 
disk thickness approaches zero, of the sum of the volumes of circular disks 
of radius x and infinitesimal thickness rp cos 8 d0, where x = rtl - rp cos 
6 (Figure 4). The volume of the part of the torus hole between the torus 
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Figure 7. Crambin protein, (a, top) Cutaway view of atoms surrounded 
by a surface envelope, (b, middle) Cross-section of van der Waals (blue) 
and interstitial (red) volumes, (c, bottom) Interior polyhedron (magenta) 
inside clipped surface. 

center and the contact circle on atom i is given by 

V = C \x2rp cos 6 dd = f V(r t f - rp cos 6)2rp cos d d0 

But the saddle piece is only a sector of this hole, so the volume obtained 
by evaluating this integral must be multiplied by </>,/(27r) to get the 
volume Kn of the toroidal sector 

V„ = (<f>,/2)[r,j2rp sin e„ - r,/,2(sin $„ cos $„ + B„) + ( r p
3 /3) x 

(sin 6si cos2 dsi + 2 sin dsi)] 

Figure 8. Asparagine amino acid, (a, top) Solvent-accessible surface: 
green, convex pieces; red, saddle pieces; blue, concave pieces, (b, middle) 
Cutaway view obtained by removing some surface pieces, not by clipping; 
yellow; interior polyhedron, (c, bottom) Exploded view of surface pieces. 
Interior polyhedron not shown. 

There is a similar term, V,,, for a t o m / The total volume of the saddle 
piece is then the sum of four terms 

V = V + V + V + V-

Concave Piece. This volume (Figure 5) is the volume of a triangular 
pyramid minus the volume of a piece of a probe sphere. The base of the 
pyramid is the triangle between the centers of atoms i,j. and k. The area 
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of this flat face, Af, is one-half the product of the lengths of two sides 
of the triangle times the sine of the angle between them 

Af = l/2<1ijdik sin wljk 

The volume of the pyramid with this triangle as base and the center 
of the probe as vertex is equal to one-third the product of the base triangle 
area, Af, with the probe height, hijk. From this volume must be sub­
tracted the volume of the piece of the probe sphere between the sphere 
center and the concave surface triangle. This volume may be calculated 
by the same method used to calculate the convex piece volume, giving 
one-third the sphere radius, rp, times the concave face area A.. The 
volume of the concave piece is then given by 

V.= y3(hijkAf-rpA.) 

Cusps. On the rare occasions where the molecular surface intersects 
itself, generating cusps (Figure 6), the saddle pieces will be self-over­
lapping, and the concave pieces will overlap each other. The molecular 
volume must be corrected to account for these overlap volumes. The 
correction terms for simple cusps may be calculated analytically, and the 
sum of all the analytical cusp correction volumes is denoted by Vx. Some 
cusps, such as those involving three or more concave pieces, are too 
complicated for analytical corrections, and their overlap volumes must 
be computed numerically. The sum of the correction volumes for these 
cusps is denoted by V^. The analytical and numerical cusp correction 
methods are complex and their detailed description is beyond the scope 
of this paper. Briefly described, an analytical saddle-piece correction 
involves starting the integration of each half of the torus hole not at the 
torus center but at the cusp point. An analytical concave-piece correction 
involves decomposing the overlap volume of two concave pieces into 
pyramids and pieces of spheres and cones. A numerical correction for 
multiply overlapping concave pieces is computed by filling the overlap 
volume with small cubes. 

The total solvent-excluded volume of the molecule may then be written 
as 

J'moi =Vp+ ZV+ + EV1 + EV. + VM + VM 

where the sums are taken over the convex, saddle, and concave pieces, 
respectively. The van der Waals volume is computed as the solvent-ex­
cluded volume for a zero-radius probe. 

Computer Program. A computer program (VAM) implementing this 
method for calculating molecular volumes, and which also calculates 
molecular areas, has been written. This program accepts as input the 
analytical molecular surface computed by the AMS program.8 Both 
programs are written in Fortran 77. The AMS program uses 2-3 s/atom 
and the VAM program uses 0.5-0.7 s/atom of computer time on a VAX 
11/750 with floating-point accelerator operating under VMS. 

Input Parameters and Data. Unless otherwise stated, the surfaces and 
volumes in this work have been computed with use of a probe radius of 
1.5 A and van der Waals radii with implicit hydrogens taken from ref 
10. The protein coordinates were obtained from the protein data bank 
at Brookhaven National Laboratory." 

Results and Discussion 
Illustrations. The solvent-accessible surface of the small plant 

protein crambin12 is shown in Figure 7a. This surface forms a 
contour surrounding the atoms of the molecule. The solvent-
excluded volume can be seen to consist mainly of the van der 
Waals volume but also of interstitial volume between the atoms 
(Figure 7b). The interior polyhedron (Figure 7c) connecting the 
solvent-accessible atoms of crambin contains most of the molecular 
volume. The surface layer of an asparagine amino acid (Figure 
8a) may have some of its pieces removed to reveal part of the 
surface of a small interior polyhedron (Figure 8b). Alternatively, 
the surface pieces may be exploded away from each other to show 
their individual shapes (Figure 8c). 

Sensitivity to Parameters. The dependence of the solvent-ex­
cluded volume of crambin on the probe radius is shown in Figure 
9. The van der Waals volume (4245 A3) is 82% of the sol­
vent-excluded volume (5172 A3) for a 1.5-A-radius probe and 76% 

(10) McCammon, J. A.; Wolynes, P. G.; Karplus, M. Biochemistry 1977, 
18, 927. 

(11) Bernstein, F. C; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F., Jr.; 
Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. J. 
MoI. Biol. 1977, 112, 535. 

(12) Hendrickson, W. A.; Teeter, M. M. Nature {London) 1981, 290, 107. 
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Figure 9. Solvent-excluded volume of crambin vs. probe radius. 

600 

> 
< 

- 6 0 0 

0.2 

Figure 10. Change in solvent-excluded volume of crambin vs. change in 
atomic radii. The volume is 5172 A3 for a 1.5-A-radius probe and 
unchanged atomic radii. 

of the solvent-excluded volume (5619 A3) for a 3.0-A-radius probe. 
The crambin volume dependence on the van der Waals radii of 
the atoms is shown in Figure 10. The volume changes by about 
5% for each 0.1-A change in atomic radii. 

Accuracy. The extent to which the numbers computed by the 
analytical partition algorithm accurately reflect the physical 
property of molecular volume depends on both how well the 
hard-sphere model represents a molecule and how well the com­
puter algorithm represents the hard-sphere model. Clearly the 
physical and chemical properties of a molecule are not completely 
accurately represented by considering the molecule to be a static 
collection of spheres, and the interactions with the solvent are more 
complex than simple steric exclusion of a spherical probe. The 
dynamics of molecules and the detailed nature of the solvent-solute 
interface are not addressed by this work. Only the geometric 
accuracy of the method is considered, that is, the accuracy with 
which the computer algorithm matches the hard-sphere model 
of the molecule. 

An estimate of the geometric accuracy of the method may be 
made. Only the numerical correction term introduces an error. 
The accuracy of the numerical correction method for complicated 
cusps can be estimated from its accuracy when applied to simple 
cusps. In this case, the analytical correction can be used as a 
reference standard. For simple cusps, the numerical and analytical 
corrections are both computed, and these corrections differ by an 
average of 10%. When this is used as a guide for complicated 
cusps, where the volume of the numerical correction is typically 
0.1% of the volume of the protein, then the protein volume would 
be in error by about 10% X 0.1% = 0.01%. The method is exact 
for van der Waals volumes, because there are no cusps. 

Comparison with Previous Methods. The solvent-excluded 
volume has been computed by summing the volumes of small cubes 
contained within the solvent-accessible surface (Figure 11a). 
Cube methods have been developed by several researchers, most 
accurately by Muller13 and Pavlov and Fedorov.14 The latter 
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Figure 11. Two-dimensional representations of molecular volumes: (a) 
Solvent-excluded volume filled with small cubes, (b) van der Waals 
volume of three intersecting spheres. The triple overlap volume is shaded. 

group has compared the volumes computed by their method to 
volumes calculated from experimental partial specific volumes. 
The average difference between the two sets of volumes was 2%. 

The analytical partition method computes a volume for sperm 
whale myoglobin15 of 19 793 A3 and a volume for T4 phage 
lysozyme16 of 20571 A3, using the van der Waals radii of Lee and 
Richards7 and a 1.5-A-radius probe. Using the same radii, Pavlov 
and Fedorov14 calculate values of 19 192 and 19 960 A3, respec­
tively, which are both about 3% smaller. Their inaccuracy is 
caused by the fact that the smoothly curved molecular surface 
is approximated by the jagged boundary of the cubes. Methods 
for calculating solvent-excluded volumes using Voronoi polyhedra17 

have been developed and applied to proteins.2,18"21 Again, an error 
is introduced because the molecular surface is represented only 
approximately, in this case as a polyhedron. 

The van der Waals volume of a molecule is the union of the 
volumes of intersecting spheres representing its atoms (Figure lib). 
The volume of the union of spheres may, in principle, be calculated 
by using the inclusion-exclusion principle.22 This principle 
represents the volume of a union of objects as the sum of individual 
object volumes, adjusted by a series of intersection or overlap 
volumes. For three spheres, A, B, and C, the volume of the union 
is given by 

V(A U B U C) = K(A) + K(B) + K(C) - K(A D B) -

K(A n c) - K(B n c) + K(A n B n c) 
Using this principle, van der Waals volumes have been calcu­

lated by Bondi,23 who has computed pairwise overlaps analytically 
and ignored higher-order overlaps, and by Pavani and Ranghino,24 

who have gone one step further and computed triple-overlap 
volumes by numerical integration. In order to compute an exact 
van der Waals volume with use of the inclusion-exclusion principle, 
it would be necessary to compute overlap volumes of higher orders 
analytically, which has not been done. The analytical partition 
method gives union volumes directly, without considering inter­
sections, because the pieces fit together without overlaps. It may 
be mentioned in passing that if in the future there develops a need 
to calculate intersection volumes, they may be computed from 
the union volumes given by the analytical partition method, using 
the converse or dual formulation of the inclusion-exclusion 
principle 

K(A H B n C) = K(A) + K(B) + K(C) - K(A U B ) -
K(A U C) - K(B U C) + K(A U B U C) 

(13) Muller, J. J. J. Appl. Crystallogr. 1983, 16, 74. 
(14) Pavlov, M. Yu.; Fedorov, B. A. Biopolymers 1983, 22, 1507. 
(15) Watson, H. C. Prog. Stereochem. 1969, 4, 299. 
(16) Remington, S. J.; Ten Eyck, L. F.; Matthews, B. W. Biochem. Bio-

phys. Res. Commun. 1977, 75, 265. 
(17) Voronoi, G. F. Reine Angew. Math. 1908, 134, 198. 
(18) Finney, J. L. J. MoI. Biol. 1978, 119, 415. 
(19) Gellatly, B. J.; Finney, J. L. J. MoI. Biol. 1982, 161, 305. 
(20) McCammon, J. A.; Lee, C. Y.; Northrup, S. H. J. Am. Chem. Soc. 

1983, 105, 2232. 
(21) Brostow, W.; Dussault, J. P.; Fox, B. J. Comput. Phys. 1978, 29, 81. 
(22) Hall, M., Jr. "Combinatorial Theory"; Blaisdell: Waltham, MA., 

1967; p 8. 
(23) Bondi, A. "Molecular Crystals, Liquids and Glasses"; Wiley: New 

York, 1968. 
(24) Pavani, R.; Ranghino, G. Comput. Chem. 1982, 6, 133. 
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In summary, previous methods for computing solvent-excluded 
volumes generate inaccuracies because of the crudity of their 
surface envelopes, while previous methods for van der Waals 
volumes generate inaccuracies because higher-order overlap 
volumes are ignored or are computed numerically rather than 
analytically. 

Measuring Small Conformational Differences. The analytical 
partition method is able to compare very closely related structures, 
whose volumes differ by only a fraction of a percent. The volumes 
of two bovine pancreatic trypsin structures are compared; the 
diisopropylfluorophosphate-inhibited (DIP) structure25 and the 
benzamidine-inhibited structure.26 A comparison25 between their 
independent refinements has shown that the average positional 
difference between internal main-chain atoms is 0.146 A. Only 
the 1629 atoms of the protein and none of the buried water 
molecules or inhibitor atoms have been used in the volume cal­
culations. The DIP-inhibited structure has a solvent-excluded 
volume of 27321 A3 and a van der Waals volume of 20903 A3. 
The benzamidine-inhibited structure has a solvent-excluded volume 
of 27 420 A3 and a van der Waals volume of 21 143 A3. The 
difference in van der Waals volumes (240 A3) is considerably 
greater than the difference in solvent-excluded volumes (99 A3). 
A structural change that would increase the van der Waals volume 
more than the solvent-excluded volume would be an increase in 
bond lengths, because there is then less overlap between bonded 
atoms. Indeed, a calculation shows that there is an average 
increase of 0.01 A in the bond lengths of the benzamidine-inhibited 
structure relative to the DIP-inhibited structure. This increase 
could likely have resulted from different bond length parameters 
used in the two refinement procedures. Most of the increase in 
the van der Waals volume is absorbed by a decrease in the in­
terstitial volume (141 A3). The solvent-excluded volume more 
accurately reflects the size of the protein as a whole, since it is 
less sensitive to stereochemical parameters. 

We are now in a position to compare the magnitudes of volume 
variations introduced from three sources: van der Waals radii, 
crystallographic coordinates, and computational method. The 
atomic radii typically used in chemical calculations2-710'14'23,24'27 

vary by about 0.1 A, which introduces a volume variability of about 
5% (Figure 10). Probe radii used6'7'13'14'18 typically vary by about 
0.1 A, which introduces a volume variability of about 1.0% (Figure 
9). Differences in atomic coordinates of the two highly refined 
trypsin structures produce a solvent-excluded volume difference 
of 0.4%. The computational error is 3% for the improved cube 
method and 0.01% for the analytical partition method. Since the 
analytical partition method introduces an error that is significantly 
smaller than that caused by uncertainties in radii and coordinates, 
it does not degrade structural information. Although the volume 
variations caused by uncertainties in radii are greater than the 
difference in trypsin volumes, the volume comparison is still valid 
because the same radii were used for both structures. 

There are many other situations where a macromolecule has 
had two slightly different three-dimensional structures determined. 
This is the case for myoglobin, which has had its structure solved 
at both room temperature and low temperature.28 Both the 
liganded (oxy) and unliganded (deoxy) myoglobin structures29 

have been determined at high resolution (1.6 and 1.4 A, respec­
tively). The structures at different temperatures of a B DNA 
dodecamer have had their volumes compared by the analytical 
partition method.6 The oxidized and reduced structures of cy­
tochrome c have been solved at 1.8 and 1.5 A, respectively.30 The 

(25) Chambers, J. L.; Stroud, R. M. Acta Crystallogr., Sect. B 1979, B35, 
1861. 

(26) Bode, W.; Schwager, P. J. MoI. Biol. 1975, 98, 693. 
(27) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C; Ghio, C; 

Alagona, G.; Profeta, S., Jr.; Weiner, P. J. Am. Chem. Soc. 1984, 106, 765. 
(28) Hartmann, H.; Parak, F.; Steigemann, W.; Petsko, G. A.; Ponzi, D.; 

Frauenfelder, H. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 4967. 
(29) Phillips, S. E. V. / . MoI. Biol. 1980, 142, 531. 
(30) Takano, T.; Dickerson, R. E. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 

6371. 
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oxidized and semiquinone flavodoxin structures have been solved 
at 1.9 and 1.8 A, respectively.31 The method could be used to 
compare the monoclinic32 and orthorhombic33 crystal forms of 
yeast phenylalanyl transfer RNA. For proteins having several 
monomers in the asymmetric unit, such as superoxide dismutase,34 

the volumes of the different monomers could be compared. 
Other Applications. The method could also be applied to the 

problem of protein compaction during refinement27 and to fol­
lowing the volume variation during energy minimizations and 
molecular dynamics simulations. With modifications, the method 
could be used to measure empty spaces surrounded by atoms, such 
as internal cavities or packing defects.4 Each internal void volume 
is surrounded by a separate piece of surface. For this case, the 
analytical partition method would be modified to consider the 

(31) Smith, W. W.; Burnett, R. M.; Darling, G. D.; Ludwig, M. L. J. MoI. 
Biol. 1977, 117, 195. 

(32) Hingerty, B. E.; Brown, R. S.; Jack, A. J. MoI. Biol. 1978, 124, 523. 
(33) Sussman, J. L.; Holbrook, S. R.; Warrant, R. W.; Church, G. M.; 

Kim, S.-H. J. MoI. Biol. 1978, 123, 607. 
(34) Tainer, J. A.; Getzoff, E. D.; Beem, K. M.; Richardson, J. S.; Rich­

ardson, D. C. J. MoI. Biol. 1982, 160, 181. 

Macrocyclic organic molecules have been studied intensively 
in recent years. A major impetus for such work derives from the 
discovery of a large number of physiologically active substances 
that contain large rings, including the general classes of the 
ionophores2 and the macrolide antibiotics.3 Additionally, the 
fast-growing area of synthetic host-guest chemistry is dominated 
by macrocyclic compounds.4 All such structures are of interest 
because they have quite specific binding capabilities, which implies 
they have well-defined, three-dimensional shapes. However, if 
one wished to a priori design a structure with a specific shape, 
a large carbocyclic ring would perhaps be the last starting point 

(1) (a) NSF Predoctoral Fellow, 1981-1984. (b) Fellow of the Alfred P. 
Sloan Foundation, 1983-1985 Camille and Henry Dreyfus Teacher-Scholar, 
1984-1989. 

(2) Dobler, M. "Ionophores and Their Structures"; Wiley: New York, 
1981. 

(3) See, for example: Gale, E. F., et al. "The Molecular Basis of Antibiotic 
Action", 2nd ed.; Wiley: London, 1981. 

(4) For a recent overview of the host-guest field, see: "Topics in Current 
Chemistry"; Vogtle, F., Ed.; Springer Verlag: Berlin, 1981 and 1982; Vol. 
98 and 101. 

polyhedron defined by the centers of the atoms surrounding the 
cavity and to subtract from the volume of this polyhedron the 
volumes of the internal surface pieces of the cavity. The volumes 
of ligand-binding pockets on protein surfaces could be measured 
by developing a way to close off the mouths. The pocket volume 
would vary somewhat depending on how the capping was done. 
Interfacial void volumes, for example, those of hemoglobin subunit 
interfaces,35 could be measured by defining a polyhedron from 
the centers of the atoms in the interface and subtracting from its 
volume the volumes of the surface pieces of these atoms. 

Compatibility with Surface Areas and Graphics. The analytical 
partition method fits into a coherent scheme of methods and 
computer programs for calculating molecular surfaces, measuring 
their areas and volumes, and displaying them on both vector and 
raster computer graphics systems.6,8 The importance of using 
compatible surface area and volume definitions has been em­
phasized.36 The ability to display the analytical partition method 
graphically (Figures 7 and 8) not only communicates the method 
but also helps verify its correctness. 

(35) Greer, J.; Bush, B. L. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 303. 
(36) Gates, R. E. J. MoI. Biol. 1979, 127, 345. 

one would choose. Such structures are known to be extremely 
flexible, and to possess a large number of rapidly interconverting 
conformers.5 It has been well documented that such "flexibility 
is the enemy",6 when designing structures with specific binding 
properties. In nature, the ionophores and macrolides contain very 
specific substitution patterns along the chain,2,3 the reproduction 
of which continues to be a focal point of modern synthetic organic 
chemistry. It seems certain that one role of such substituents is 
to diminish the conformational flexibility of the macrocycles, 
thereby leading to better defined topographies. In the area of 
synthetic host-guest chemistry, less subtle approaches to limiting 
ring flexibility have been adopted, primarily involving the in­
corporation of structurally rigid units (acetylenes, arenes, . . .) 
into the ring. 

The present work was initiated with the goal of quantifying the 
effects of specific substituent patterns on macrocycle conforma­
tional dynamics. We believe that such information would be 

(5) Dale J. Top. Stereochem. 1976, 9, 199-270. Anet, F. A. L.; Rawdah, 
T. N. J. Am. Chem. Soc. 1978, 100, 7166-7171, 7810-7814. 

(6) Breslow, R. Isr. J. Chem. 1979, 18, 187-191. 
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Abstract: The enantiomerizations of several dioxa-(l,5)-naphthalenophanes (1: n = 14, 15, 16) have been studied by DNMR 
spectroscopy, and accurate activation parameters have been obtained. Large, negative entropies of activation are observed 
when n = 14 or 15. In sharp contrast, AS* is very nearly zero when n = 16. Molecular mechanics calculations have been 
applied to these systems in an effort to obtain some insight into the underlying causes of this effect. The results suggest a 
model in which the polymethylene chains of all three compounds are quite unrestricted and conformationally flexible in the 
ground state. However, in the enantiomerization transition states when n = 14 or 15, the chain is quite restricted and this 
leads to the negative AS*. When n = 16, even in the enantiomerization transition state, the chain is relatively unrestricted 
and AS* is small. 
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